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The recently developed technique of solid state coextrusion for ultradraw-
ing senicrystalline thermoplastics has been applied in the preparation of self-
reinforced high density polyethylene extrudates. The extrudates consist of
definite core and sheath phases composed of different molecular weights (Mw)
in the range of 60,000 - 250,000 and different molecular weight distributions
(Mw/Mn = 0.3 - 20). Cocylindrical billets of two different phases were pre-
pared for extrusion by inserting a polyethylene rod within a tubular billet
of a different high density polyethylene followed by melting the two phases
to obtain bonding between them. The billet was then split longitudinally to
increase extrusion speed followed by extrusion at 120°C., 0.23 GPa and extru-
sion draw ratio 25.

Thus it was possible to produce extrudates of high tensile modulus (45
GPa) and strength (0.55 GPa) at a rate near 0.7 cm./min. In general, the ten-
sile properties of the extrudates increased with average molecular weight and

were insensitive to the molecular weight distribution of the two phases.
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INTRODUCTION

The development of high strength forms of semicrystalline thermoplastics
has been pursued recently with considerable interest by employing essentially
three different techniques: crystalline state extrusion, drawing and drawing
from solution(!-8)

Crystalline state extrusion and drawing deal with the solid state defor-
mation of thermoplastic polymers (polyethylene being the primary candidate).
There are several parameters which may influence the extrusion or drawing be-
havior. Two such parameters are the molecular weight (Mw) and molecular weight
distribution (Mw/Mn). Ward and his co-workers(3'5) have reported on the effects
of these parameters on drawing. They report that molecular weight and distri-
bution affect the draw rate and impose a 1imit to the maximum obtainable draw
ratio for specific drawing conditions (temperature and strain rate). Porter
et al.(g) in their studies of the effect of molecular weight on the mechani-
cal properties of ultradrawn high density polyethylene (HDPE) report that the
higher molecula» weight polyethylenes give higher strength fibers yet with
no apparent effect on the Young's modulus which may have been concealed by
annealing effects. In addition, solid state extrusion of high molecular weight
polyethylenes at lower temperatures, <120°C., where annealing does not occur
proceeds slowly for extrusion draw ratios >15 and hinders the systematic study
of the effect of molecular weight. This limitation has been partially allev-

iated by the recently developed technique of solid state coextrusion(lo']]).
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(12,13) we reported the results of the extrusion of

In previous publications
self reinforced thermoplastic composites and emphasized the feasibility of
crystalline coextrusion of polyethylenes of different molecular characteris-
tics. We also reported that the extrusion rate was faster when the high mo-
lecular weight HDPE component was used as sheath rather than as core component
in the initial preformed billet.

In this report we discuss the effects of the molecular parameters on the

tensile properties and extrusion rate of solid state coextruded high density

polyethylenes.

EXPERIMENTAL

(a) Preparation of Composite Billets
Composite billets of different high density polyethylenes were prepared

(]]’]3). Briefly, sheath components were

in a specially designed apparatus
prepared by drilling out preformed rods into tubular billets and core compo-
nents were produced by turning down on a lathe a billet of the appropriate
polyethylene to a diameter equal to the inner diameter of the drilled out billet.
Subsequently, the sheath and core sections were melted together into one billet
consisting of two different components. The volume fraction of the core com-
ponent was equal to 25%. The composite billets were then split longitudinally

into two semiperipheral segments which assembled side by side were then press-

fitted into the reservoir of an Instron Capillary Rheometer and coextruded.
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In these studies the composite billets were extruded at 120°C. and 0.23 GPa
through a brass conical die of length 2.54 cm. and nominal extrusion draw ratio
25 defined as the ratio of die entrance to exit cross sectional areas.
Initially, both core and sheath sections were prepared from the same poly-
mer. Subsequently, the polymer sheath/core combinations were varied to include
high density polyethylenes of different molecular weights (Mw) and molecular
weight distributions (Mw/Mn). The molecular characteristics of the polyethy-

lenes used are listed in Table I.

(b) Thermal Properties

The melting curves of the extruded samples were determined with a Perkin-
Elmer differential scanning calorimeter (CDSC) Model 1B, calibrated by the
melt transition of indium. The melt behavior of the samples, -2.0 mg., was

investigated at a heating rate of 10°C. min.”'.

(c) Mechanical Properties

The tensile modulus and strength determinations of the extruded samples
were preformed at room temperature using an Instron testing instrument, Model
TTM. For modulus measurements a strain gage extensometer (10 mm. gage length)
was used to measure strains on the deformed samples. The strain rate was 3.3

x 10°% sec.”!. The tensile modulus was determined from the tangent to the

stress-strain curve at 0.1% strain. The tensile strength for break was deter-
-1

mined at a strain rate 2 x 10'3 sec.
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RESULTS AND DISCUSSION

The systematic study of the effect of average molecular weight (Mw) and
molecular weight distribution (Mw/Mn) on the extrusion behavior has been tested
more thoroughly and at lower temperatures than previously. Ultraoriented ex-
trudates (25X) of different Mw and Mw/Mn have been obtained in continuous lengths
at temperatures significantly below the melting range. The characteristic
features of crystalline state coextrusion may be viewed in Figures 1 and 2
and in Tables II and III. Figure 1 shows the length versus time data for the
solid state extrusion of split billets of a single high density polyethylene.
Figure 2 shows extrudate length versus time for coextruded composites. Tables
IT and III 1list the extrusion rates and the mechanical properties which will
be discussed subsequently.

In these studies we used two different families of high density polyethy-
lenes (Alathon and Marlex) since they cover a wide range of different Mw and
Mw/Mn‘

From Figure 1 and Table II it is clear that the extrusion rate decreases
with increasing Mw or decreasing melt flow index. This trend observed separ-
ately with each HDPE family, is also observed with the two sets superimposed
as shown in Figure 3. Since the extrudates consist of two components, we plotted
our results with respect to the average values of the average molecular weight
and melt flow index of these components as shown in Table IV. The melt flow

index seems to be related to the apparent viscosity on crystalline state
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extrusion as discussed below. These were estimated by assuming the law of
mixtures and considering the volume fractions of the components. Thus, the
extrusion rate varies from 4 cm./min. (at 0.16 GPa) for Alathon 7050 with MFI =
17.5 to 0.06 cm./min. (at 0.23 GPa) for Marlex 6003 with MFI = 0.2. Although
variation in Mw/Mn does not influence significantly the extrusion rate, MFI
has a more profound effect. This is indicated clearly by examining the molec-
ular characteristics of the studied polyethylenes in Table I and Figure 3.
In particular, for polymers D and E with the same Mw the extrusion rate increases
with MFI and not with Mw/Mn'

The extrusion rates of the composite extrudates are shown in Table II.
It should be noted that the high molecular weight polyethylene was always the
sheath component (75% by volume) of the composite billet. It is interesting
to note that the viscosity of the semicrystalline state as reflected by the
extrusion rate seems to be related to the melt viscosity (MFI) which is a melt
state property. The extrusion rate of HDPE single crystal aggregates grown
from p-xylene solution is much faster than that of melt crystallized solid

(14).

plugs It is believed that the faster rate was caused by the reduced num-

ber of tie molecules in the single crystal morphology. According to Keith

et al.(]s)

, the number of tie molecules increases with Mw. Thus the observed
increase in apparent viscosity on crystalline state extrusion with decreasing

MFI is consistent with the above suggestion.
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The characteristic feature of the extrusion behavior in the solid state
coextrusion of the composite billets is the significant increase in extrusion
rate of the high Mw component. In the extreme case of the slow extruding high
molecular weight polyethylene F, incorporation of the low Mw polyethylene A
as the core resulted in a ten fold increase in extrusion rate. Again, as shown
in Figure 3, the extrusion rate of the composite extrudates is a function of
the average melt flow index of the component polymers. Although the rates
are highly enhanced by the incorporation of a low Mw polyethylene as the core
component, they are influenced by the high Mw component which acts as the "bottle-
neck" of the coextrusion process under these extrusion conditions. An explana-
tion for the remarkable enhancement in extrusion of the composite billets is

(13). The object of the present study

offered in the first part of this paper
is mainly the extrusion of ultraoriented fibers with enhanced tensile proper-
ties and the effects of the molecular weight and molecular weight distribution.

(4)

Capaccio and Ward compared the drawing behavior of various commercial poly-
ethylenes and concluded that optimum results are obtained when the average
molecular weight is lTow and the molecular weight distribution is narrow. Bar-
ham and Ke]ler(7) on the other hand report that the presence of a low molec-
ular weight component is essential in drawing ultraoriented filaments or films
and that it exists in some segregated form. Although the dependence of elas-

tic modulus upon draw ratio is strongly emphasized, it is not clarified which

of the two factors i.e. molecular weight or molecular weight distribution,
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is the decision and how they affect the tensile properties. However, with
the incorporation of a low Mw HOPE as the core segment the extrusion of con-
tinuous lengths of the higher Mw HDPE at low extrusion temperature and high
EDR is now feasible and these conclusions may be drawn.

Extrusion at the low extrusion draw ratio 12 was also attempted to ascer-
tain the extrusion draw efficiency at Tow EDR. As it was anticipated, at this
low extrusion draw ratio, the tensile modulus of the filaments was independ-
ent of the molecular weight but not the tensile strength which increased with
molecular weight.

The mechanical property of extrudates of EDR 12 are shown in Table V.

From the values of tensile modulus and tensile strength of the singie polymers
(shown in Table II and Figures 4 and 5), it is clear that there is at least

50% increase in the magnitude of the tensile property as the Mw increases from
59,000 for polyethylene A to 200,000 for polyethylene F. There appears to

be no effect of molecular weight distribution on tensile properties as shown

by the two polyethylene families. Namely, polyethylene D and E have tensile
moduli and strengths of the same magnitudes although these polymers have differ-
ent molecular weight distributions. Similarly with polyethylene F and G, there
is no apparent effect of molecular weight distribution.

The mechanical properties of the composite extrudates may be ascertained

by the simple rule of mixtures that applies to a parallel model(]G)

FoE RN A . v.) (1)
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E = EV AE {1 - vc) (

where T = tensile strength, £ = modulus, Vc = volume fraction of core compo-
nent and the subscripts ¢ and s refer to the core and sheath components. As
the filament comprising the core of the extrudate is continuous and surrounded

by a bonded sheath via melting it is legitimate to use the above equations

to describe the mechanical properties. The values of these properties obtained
by the above equations are in close proximity with those obtained experimentally.

The results of these studies can be explained in terms of Peterlin's inter-

crystalline tie molecule model. Accordingly, an increase in molecular weight
leads to an increase in the number of tie molecules and the greater number

of tie molecules the higher the proportion of extended chains in the non-crys-
talline phase for a particular extrusion draw ratio. This higher proportion
of extended chains enhances the tensile modulus. On the other hand, the ten-
sile strength of the material which results from the crystalline component
and the intercrystalline tie molecules, is further increased by the higher
number of intercrystalline tie molecules. The latter not only run longitud-
inally in each microfibril but also laterally between adjacent microfibrils
resulting in higher cohesion in the material. These tie molecules prevent

microfibrillar slipping.

One salient feature of our solid state coextrusion technique is the feas-

ibility to extrude at high extrusion draw ratio for polyethylene (;25) and

at temperatures substantially below the melting point (-110 - 120°C.). At

o !i Eh“" Sy T“'r '.":
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such temperatures the deformation process may be more efficient in producing
a morphology with a higher proportion of extended chains. This idea is fur-
ther supported by the results of extrusion at 134°C. and 0.24 GPa(g) and our
coextrusion results of low draw ratio (12X) at 110°C. and 0.10 GPa. In either
case, the conditions do not favor the attainment of efficient extension of
molecular chains between intercrystalline tie molecules. In the first case
there is excessive thermal energy causing relaxation of the amorphous phase
and therefore amorphous disorientation. In the second, the low extrusion draw
does not cause sufficient deformation to produce a morphology with a high pro-
portion of extended chains. Consequently, the effect of molecular weight on
modulus cannot be detected satisfactorily under these conditions. Finally,
the structure of the coextrudates was also studied by thermal analysis. Fig-
ure 6 shows the DSC melting curves of single polymer extrudates and coextru-
dates obtained at a heating rate of 10°C./min. Single polymer extrudates ex-
hibited sharp single melting peaks which were significantly higher (~7°C.)
than the original billets (Figure 7). In contrast, all the coextrudates ex-
hibited double melting peaks irrespective of heating rate (2.5~20°C./min.),
indicating that they were not caused by a reorganization during heating but
were coexistence of two different morphologies.

Melting curves of HDPE extrudates exhibiting two melting peaks have been
reported on irradiated(]7), nitric acid etched(]g’lg)
In all cases, the two peaks were attributed to different morphological compo-

nents. In order to clarify the two melting peaks, the coextrudates were

and annealed(zo) samples.
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separated into sheath and core components and their melting curves were recorded
at heating rate ]OOC./min. One example is shown in Figure 7. It is clearly
seen that the melting peak temperature of the sheath (high Mw HDPE component)
is higher than that of core (low Mw HDPE), and that the double melting peaks
in coextrudates were caused by the two components.

Another feature to be noted is that the sheath and core peaks are sharp
and equivalent to those of each single polymer extrudate shown in Figure 6.
Furthermore, the area of lower melting peaks is about one fourth of the total
peak area, the ratio corresponding to the volume fraction of the two polyethy-
lene components in the initial billet. These facts indicate that the sheath
and core polyethylene components were extruded at the same rate and maintained
the original geometrical arrangement of definite sheath and core even after
coextrusion. Although the melting peak temperature alone cannot be used as
a sound criterion for the efficiency of draw, these DSC results suggest high

efficiency of draw for both of sheath and core polyethylene components.
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CONCLUSIONS

The mechanical properties of cocylindrical composite fibers extruded by
crystalline state coextrusion have been studied for various commercial high
density polyethylenes of different molecular weights and distributions. The
method is unique in producing ultradrawn fibers (EDR 25). The results of this
study show that the extrusion rate does not depend on the molecular weight
distribution and is directly related to the average molecular weight or melt
flow index of the component polyethylenes. Similarly, the mechanical proper-
ties increase with the average molecular weight but do not depend on the mo-
lecular weight distribution. The mechanical property results can be described
by the intercrystalline tie molecule model, i.e. the fraction of continuous
crystals, and ascertained by the law of mixtures for a paralliel model. The

efficiency of drawing by coextrusion was evaluated by thermal analysis.
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TABLE 1

Molecular Characteristics of (studied)
High Density Polyethylenes

Polymer Designation Mmo(x 1073 MM Melt Flow Index
A o 59 2?96" 7.5
B 92 3.54 2.8
C 147 4.43 1.0
D <10 <7 6.5
E <110 13-20 5.0
F =200 7-13 0.3
G <250 13-20 0.2




TABLE 11

Extrusion Rate and Tensile Properties for
Individual High Density Polyethylene Extrudates

High Density Polyethylene Extrusion Rate Tensile Strength Tensile Modulus

Grade (e futn:) (W) Teba)
A 4.0" 0.37 28
B 1.0 0.45 25
c 0.15 0.52 3N
D 1t 0.49 23
E 0.8 0.48 23
F 0.06 0.55 45
8 0.05 0.47 45

*
Extrusion performed at 0.16 GPa pressure.
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TABLE 111

Extrusion Rate and Tensile Properties of Composite
High Density Polyethylene Extrudates

Designation Extrusion Rate Tensile Strength Tensile Modulus
(sheath/core) {em..min.) (GPa) - (GPa)

B - A 2.5 0.43 31

C-A 0.2 0.48 26

D-A 2.7 0.44 32

E-A 8 0.34 26

F-A 0.5 0.6 36

G-A 0.25 0.51 38

P—
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TABLE_ IV

Average Mw and MFI of Coextruded
High Density Polyethylenes

Polymer Designation” fjw_(LLQfl MFI
B - A 837 6.5
C-h 125.0 5.1
D-A 97.2 9.2
E-A 97.2 8.1
F-A 202.2 4.6
G- A 202.2 4.5

*
Sheath/core assignment.
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TABLE V

Tensile Properties of Individual and Composite
High Density Extrudates at EDR 12

Young's Modulus

Polymer Designation (GPa)

A
B
€

9
1
12
10
9
9

i0

*
Sheath/core assignment.

Tensile Strength
(GPa)

0.25
0.39
0.40
0.45
0.47
0.38
0.40
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Figure

Figure

Fiqgure

Figure 5

Figure

Figure

FIGURE CAPTIONS

Extruded Filament Length versus Time Curves for Individual Poly-
; e i . 0 I

ethylenes. Extrusion Conditions = Tex 120°C. , Pext 0.23

GPa, EDR = 25, No Lubricant.

Extrudate Length versus Time for Polyethylene Composite Extru-

dates. Extrusion Conditions: T . = 120°C., Pt = 0-23 GPa,

ext
EDR = 25, No Lubricant. The sheath-core order indicates the
geometrical arrangement of the polyethylene phases.

Extrusion Rate versus Melt Flow Index for Single and Composite
Polyethylene Extrudates (EDR = 25). For composite extrudates
the MFI values represent the average value for the two compo-
nents on the basis of their volume fractions.

Tensile Modulus as a Function of Molecular Weight for Indivi-
dual and Composite Polyethylene Extrudates. For composite ex-
trudates, the Mw represent the average value for the two com-
ponents on the hasis of their volume fractions.

Tensile Strength as a Function of Molecular Weight for Indivi-
dual and Composite Polyethylenes. For composite extrudates,
the Mw represents the average value for the two components on
the basis of their volume fractions.

Melting Thermograms of Single Polyethylene Components (a) and
Coextrudates (b); Heating Rate 10°C. /min.

Melting Thermograms of C - A Coextruded Fiber and its Sheath

and Core Components. Thermograms of the initial preformed billet

components are also included.
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